GAS DETECTORS PHYSICS 1

BASIC DETECTION PROCESSES

- ENERGY LOSS: COULOMB INTERACTIONS
- DRIFT AND DIFFUSION OF CHARGES
- COLLISIONAL EXCITATION AND IONIZATION
- AVALANCHE CHARGE MULTIPLICATION
- SIGNAL FORMATION AND DETECTION

IMAGING OF CHARGED PARTICLES INTERACTIONS

~1940 ~ 1960 EMULSIONS BUBBLE CHAMBER

~1960 Spark and Streamer Chambers

IMAGING OF CHARGED PARTICLES INTERACTIONS

~1970

2016: GEM TPC UPGRADE

TIME PROJECTION CHAMBER (TPC)

THE FUTURE?

OPTICAL GAS ELECTRON MULTIPLIER (GEM)

CHARGED PARTICLES COULOMB INTERACTIONS: EXCITATIONS AND IONIZATIONS

 δ Rays: Secondary ionizations

Charged Particles Cluster Size and δ Electrons Range

H. Fischle et al, Nucl. Instr. and Meth. A301 (1991) 202

CHARGED PARTICLES

 δ Electrons

ENERGY LOSS ASYMMETRY: LARGE INCIDENCE ANGLES

POSITION ACCURACY

DIFFERENTIAL ENERGY LOSS IN THIN GAS SAMPLES:

CHARGED PARTICLES ENERGY LOSS STATISTICS: GAUSS VS LANDAU

ALICE GEM-TPC DIFFERENTIAL ENERGY LOSS (TRUNCATED MEAN)

PHOTONS PHOTOELECTRIC, COMPTON, PAIR PRODUCTION

A. Thompson et al, X-RAY DATA BOOKLET (2001)

SOFT X-RAYS

ABSORPTION LENGTH

SOFT X-RAYS ESCAPE PEAK

SOFT X-RAYS ABSORPTION RADIOGRAPHY

2001: GEM with Electronic Readout

2018: GEM with Optical Readout

THE GDD BAT

F. Sauli Nucl. Instr. Meth. A461(2001)47 F. Brunbauer et al, JINST13 (2018)T02006

DETECTION OF NEUTRONS

DETECTION OF NEUTRONS

 $_{2}^{3}He + n \rightarrow _{1}^{3}H + p$

IONIZATION CHAMBER WITH OTICAL GEM READOUT

F.A.F. Fraga et al, Nucl. Instr. and Meth. A478 (2002) 357

 $^{10}_{5}B + n \rightarrow ^{7}_{3}Li + \alpha$

THERMAL NEUTRONS RADIOGRAPHY ¹⁰B COATED GEM

M. Klein and Ch. Schmidt Nucl. Instr. and Meth. A628 (2011) 9

DRIFT AND DIFFUSION OF IONS

DRIFT AND DIFFUSION OF IONS

GAS	ION	$\mu (cm^2 V^{-1} s^{-1})$
He	He ⁺	13.0
Ar	Ar^+	1.7
CH_4	$\mathrm{CH_4}^+$	2.22
Ar	$\mathrm{CH_4}^+$	1.87
Ar	CO_2^+	1.72

COLLISIONAL CHARGE TRANSFER:

 $IF E_{I}(B) < E_{I}(A)$:

A⁺ + B --> A + B⁺

BLANC'S LAW:

$$rac{1}{\mu_i} = \sum_{j=1}^n rac{P_j}{\mu_{ij}}$$

(a) $E = 200 V cm^{-1} W \sim 130 cm s^{-1}$

IONS BACKFLOW AND SPACE CHARGE

DRIFT AND DIFFUSION OF ELECTRONS

DRIFT VELOCITY $W^{-} = s/t$

DIFFUSION
$$\sigma^-=\sqrt{rac{2\epsilon_k x}{eE}}$$

 ε_{κ} : Characteristic Energy $\varepsilon_{\kappa} = kT$: Thermal Limit

Rob Veenhof and Piet Verwilligen: MODELLING AND SIMULATIONS

DRIFT AND DIFFUSION OF ELECTRONS

LONGITUDINAL AND TRANSVERSE DIFFUSION

DRIFT OF ELECTRONS IN MAGNETIC FIELD

DRIFT OF ELECTRONS IN MAGNETIC FIELD: E // B

TIME PROJECTION CHAMBERS:

LONGITUDINAL POSITION ACCURACY VS DRIFT LENGTH

MAGNETIC FIELD DEPENDENCE:

DEPENDS FROM GAS AND FIELDS

ELECTRON-MOLECULE COLLISIONS

ELETRON-MOLECULE CROSS SECTION AT INCREASING ELECTRIC FIELDS:

https://nl.lxcat.net/home/

ELECTRONS ENERGY DISTRIBUTION

ELECTRONS ENERGY DISTRIBUTION

"COOLING" EFFECT OF MOLECULAR GAS ADDITIONS

MAJOR OUTCOMES OF THE ELECTRON-MOLECULE COLLISIONS

FLUORESCENCE AD SCINTILLATION

NOBLE GASES AND LOW IONIZATION POTENTIAL VAPORS:

FLUORESCENCE AD SCINTILLATION

CF4 SCINTILLATION:

HIGH FIELDS : CHARGE MULTIPLICATION

CLOUD CHAMBER IMAGES OF **A**VALANCHES:

$$n(x) = n_0 e^{\alpha x}$$
 $\alpha = \alpha(E)$: Townsend coefficient

$$M(x) = \frac{n}{n_0} = e^{\alpha x}$$
 Charge Gain

H. Raether Electron Avalanches and Breakdown in Gases (Butterworth 1964)

CHARGE MULTIPLICATION

Townsend Coefficient α in Ar-Methane Mixtures

CHARGE MULTIPLICATION

INDUCED CURRENT ON ANODE:

ON CATHODE: $Q_C(t) = -Q_A(t) \quad I_C(t) = -I_A(t)$

PROPORTIONAL COUNTER

CHARGE MULTIPLICATION

AVALANCHE SIZE PROBABLILITY FOR 1 PRIMARY ELECTRON (FURRY LAW):

$$P(N) = \frac{1}{\overline{N}}e^{-\frac{N}{\overline{N}}}$$

AVALANCHE SIZE PROBABLILITY FOR *n* PRIMARY ELECTRONS:

$$P(n,N) = \left(\frac{N}{\overline{N}}\right)^{n-1} \frac{e^{-\frac{N}{\overline{N}}}}{(N-1)!}$$

CHARGE MULTIPLICATION

Avalanche Size Probability at High Fields (High Gains) Polya function:

SINGLE ELECTRON AVALANCHE SIZE AT INCREASING GAINS (EXPERIMENTAL):

H. Sclumbohm, Zeit. Physik 151(1958)563

GASEOUS COUNTERS: MWPCs TO MPGDs

MWPC

+

MICROMEGAS

MIROGROOVE, MICROGAP, MICROPIXEL RESISTIVE PLATE WELL

MICROMEGAS

PROPORTIONAL GAIN

J. Bortfieldt et al, Nucl. Instr. Meth. 718A(2013)406

GEM

RATE CAPABILITY > $10^6 \text{ MM}^{-2} \text{ s}^{-1}$

J. Benlloch et al, Nucl. Instr. Meth. 419A(1998)410

MULTIGEM

TRIPLE-GEM CASCADED GEM ELECTRODES LOWER VOLTAGE ON EACH GEM HIGHER SAFE TOTAL GAIN

GAIN AND DISCHARGE PROBABILITY ON 5 MeV α

C. Büttner et al, Nucl. Instr. and Meth. A409(1998)79

THE FIELD IS INCREASED IN FRONT AND BEHIND THE AVALANCHE PHOTONS ARE EMITTED AND RECONVERTED IN THE HIGH FIELD:

SECONDARY AVALANCHES FORMATION:

TANSITION TO FORWARD-BACKWARD STREAMER:

DISCHARGE !

RAETHER LIMIT: ~ 10⁷ ELECTRONS-IONS

DISCHARGE

DESTRUCTIVE EFFECTS OF DISCHARGES:

DRIFT CHAMBER (1974)

MSGC (1994)

DISCHARGE PREVENTION AND MITIGATION IN MPGDS:

Piotr Gasik: GAS DETECTORS PHYSICS 2

TO KNOW MORE ON GASEOUS DETECTORS:

F. SAULI AND E. OLIVERI: GAS DETECTORS HANDBOOK

HTTP://FABIO.HOME.CERN.CH/FABIO/HANDBOOK.HTML

.... AND THE OTHER LECTURES AT THIS SCHOOL!